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HUMAN CAPITAL AND LEARNING AS A SOURCE
OF SUSTAINABLE COMPETITIVE ADVANTAGE

NILE W. HATCH* and JEFFREY H. DYER
* Marriott School, Brigham Young University, Provo, Utah, U.S.A.

This paper seeks to identify the sources of wide and persistent variations in learning performance
in the semiconductor manufacturing industry. In the resource-based view of the firm, human
capital is frequently assumed to contribute to competitive advantage due to its inimitability based
on its intangible, firm-specific, and socially complex nature. Consistent with this view, we find
that investments in firm-specific human capital have a significant impact on learning and firm
performance. More specifically, human capital selection (education requirements and screening),
development through training, and deployment significantly improve learning by doing, which in
turn improves performance. However, we find that acquiring human capital with prior industry
experience from external sources significantly reduces learning performance. We also find that
firms with high turnover significantly underperform their rivals, revealing the time-compression
diseconomies that protect firm-specific human capital from imitation. These results provide new
empirical evidence of the inimitability of human capital. Copyright  2004 John Wiley & Sons,
Ltd.

INTRODUCTION

The resource-based view of the firm seeks to
explain sustained differences in firm performance
by identifying differences in firm resources. A
firm with resources that are valuable and rare
may generate a competitive advantage over its
rivals, thereby resulting in superior financial per-
formance (Barney, 1991; Conner, 1991; Mahoney
and Pandian, 1992; Peteraf, 1993; Wernerfelt,
1984). For a firm to sustain its competitive advan-
tage, the resources must also be inimitable and
non-substitutable to prevent rivals from replicat-
ing the value of the resources and competing away

Keywords: human capital; learning; resource-based view;
knowledge management
*Correspondence to: Nile W. Hatch, Marriott School, Brigham
Young University, 790 Tanner Building, Provo, UT 84602,
U.S.A. E-mail: nile@byu.edu

their benefits. The duration of a firm’s competi-
tive advantage is directly related to the strength
of ‘isolating mechanisms’ (Rumelt, 1984), such
as firm specificity, causal ambiguity, social com-
plexity, path dependence, and time compression
diseconomies, that protect resources from imitation
(Dierickx and Cool, 1989; Lippman and Rumelt,
1982; Reed and DeFillippi, 1990).

Given the ease with which human resources can
move between firms, it would seem on the sur-
face that it should be difficult to protect human
capital from expropriation by rivals.1 However,
human capital is most valuable and most inim-
itable when it is firm-specific and resides in the
environment where it was originally (optimally)
developed (Hitt et al., 2001; Klein, Crawford, and

1 In this paper, we define human resources as workers and human
capital as their knowledge and skills. In this definition, some
human capital (e.g., education) is generic, while some is firm-
specific.
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Alchian, 1978; Lepak and Snell, 1999). When a
firm acquires human capital from one of its rivals,
it surely appropriates some of the rival’s knowl-
edge, but it must also undergo a period of dynamic
adjustment costs2 while the best uses of the human
capital are discovered and tailored to the needs of
the new environment (Cappelli and Singh, 1992;
Mahoney and Pandian, 1992; Mahoney, 1995; Pen-
rose, 1959; Prescott and Visscher, 1980; Teece,
Pisano, and Shuen, 1997). Thus, human capital can
generate sustained rents to the degree that it is spe-
cific to the originating firm and adjustment costs
in a new environment prevent immediate expropri-
ation by rivals.

The same isolating mechanisms that protect
resources from expropriation also hinder our efforts
to identify, measure, and estimate the relationship
between resources and competitive advantage. One
opportunity to observe and measure the role of
human resources is in their impact on learning
by doing performance. In the process of learn-
ing within a firm, human capital becomes more
firm-specific and potentially less useful to rivals.
That portion of firm-specific human capital that is
tacit knowledge is particularly inimitable (Liebe-
skind, 1996; Mowery, Silverman, and Oxley, 1996;
Szulanski, 1996). Moreover, the ability of human
resources to learn is enhanced by their human
capital investments in experience and problem-
solving (Hitt et al., 2001). Thus, we see a feedback
effect in the relationship between human capital
and learning: learning creates specific human cap-
ital (tacit knowledge) that in turn enhances the
firm’s learning performance. The resource-based
view predicts that superior human capital, when
it is firm-specific, can create competitive advan-
tage as human capital improves learning by doing,
thereby reducing the firm’s cost.

Drawing upon a rich set of proprietary data from
the semiconductor industry, this paper tests propo-
sitions of the resource-based view related to the
impact of firm-specific investments in human cap-
ital on learning by doing performance. We find
that firms that are superior at acquiring, devel-
oping, and deploying human capital enjoy sus-
tained advantages in learning and ultimately cost.
As employees acquire increasingly firm-specific

2 Kor and Mahoney (2000) describe a number of mathematical
models of dynamic adjustment costs for both human and physical
capital, including Ingham (1992), Mortensen (1983), Penrose
(1959), Slater (1980), and Treadway (1970).

knowledge, they are capable of making increas-
ingly inimitable contributions to the learning per-
formance of the firm, a result that satisfies the nec-
essary condition for human capital to be a source of
competitive advantage. The fact that human capital
significantly improves performance is particularly
interesting because the semiconductor manufactur-
ing industry is characterized by large (fixed-cost)
capital investments.

Some prior studies have found performance
effects attributable to human capital and assume
that competitive advantage is sustainable based on
the intangible, socially complex nature of human
capital (Arthur, 1994; Huselid, 1995; Koch and
McGrath, 1996). In contrast, rather than assume
sustainability of the competitive advantage, we
find empirical evidence that rivals cannot quickly
or costlessly imitate or substitute for the value of
firm-specific human capital. This paper also con-
tributes to our understanding of how management
of learning, through management of human capital,
contributes to sustainable competitive advantage.

LEARNING, HUMAN CAPITAL, AND
COMPETITIVE ADVANTAGE

Learning by doing refers to the observed phe-
nomenon of manufacturing costs falling as man-
ufacturing experience increases.3 Wright’s (1936)
pioneering study detailed systematic reductions in
labor costs with every doubling of airframe pro-
duction and spawned a flurry of studies to verify
learning curves in other industries.4 The pattern of
cost reductions is defined by the learning curve,
which traditionally takes the form

C(x) = ax−λ (1)

3 Formally, learning by doing refers to reductions in direct
labor requirements as cumulative volume increases. We refer
to learning by doing as a generic term for all of the variations of
learning that have been identified, e.g., learning by experience,
learning by using, learning before doing.
4 For example, learning by doing has been documented in air-
frames (Alchian, 1963; Wright, 1936), automobile assembly
(Baloff, 1971), chemical processing (Lieberman, 1984), cleri-
cal activities (Kilbridge, 1962), housing construction (DeJong,
1957), machine tools (Hirsch, 1952), metal products (Dudley,
1972), nuclear plant construction (Zimmerman, 1982), petroleum
refining (Hirschmann, 1964), pharmaceuticals (Pisano, 1994,
1996), printing and typesetting (Levy, 1965), radar (Preston
and Keachie, 1964), rayon (Jarmin, 1994), and semiconductors
(Bohn, 1995; Gruber, 1992; Hatch and Mowery, 1998; Irwin and
Klenow, 1994; Webbinck, 1972).

Copyright  2004 John Wiley & Sons, Ltd. Strat. Mgmt. J., 25: 1155–1178 (2004)



www.manaraa.com

Human Capital as Competitive Advantage 1157

where x is experience (typically measured by
cumulative production volume), C (x ) is unit vari-
able cost after x units of experience, a is the
starting cost, and λ is the constant-elasticity learn-
ing parameter. The slope of the learning curve is
traditionally communicated by the degree of cost
reduction associated with a doubling in experi-
ence. For example, with an 80 percent learning
curve, cost falls to 80 percent of its previous level
(i.e., falls by 20%) with every doubling in expe-
rience. Armed with their estimates of the learn-
ing curve, managers have employed learning by
doing in pricing strategy, bid preparation, fore-
casting labor requirements, financial planning, and
capacity management.

In strategy, learning by doing can confer com-
petitive advantage as long as what is learned
remains proprietary. If early firms can stay ahead
of their rivals in the race down the learning curve,
they earn a cost advantage (Amit, 1986). If the
learning curve is of the right slope—not too steep
and not too flat—learning by doing also promises
to deter rivals from entering because they are
unwilling to face a competitor with a large, sus-
tainable cost advantage (Lieberman, 1987, 1989;
Spence, 1981). Thus, learning by doing has the
potential to simultaneously confer cost advantages
and prevent new market entry. One path to compet-
itive advantage, espoused by the Boston Consult-
ing Group (1972), is to win the market share battle.
The firm with the highest market share eventually
has the highest cumulative volume and expects the
lowest costs and highest profits.

In practice, however, the expected benefits of
learning often did not materialize (Abernathy and
Wayne, 1974; Alberts, 1989; Hall and Howell,
1985). The inability of some firms to realize com-
petitive advantage revealed gaps in our under-
standing of the learning curve and its role in
competitive advantage (Dutton and Thomas, 1984;
Montgomery and Day, 1985). The Boston Con-
sulting Group’s approach to strategizing on the
learning curve assumed a uniform rate of learn-
ing for all firms in an industry. Thus, firms sought
above-average performance through greater expe-
rience. However, subsequent research has shown
that when knowledge diffuses across firm bound-
aries, some of the benefits of the knowledge orig-
inally obtained through learning by doing ‘spills
over’ to rival firms (Ghemawat and Spence, 1985;
Irwin and Klenow, 1994; Jarmin, 1994; Lieber-
man, 1987). Because of these spillovers, some of

the value of experience is expropriated by rivals
with less experience. If the rate of knowledge dif-
fusion is high enough, any potential competitive
advantage is completely eroded.

Competitive advantage through cumulative vol-
ume may also fail to materialize when learning
is the product of factors other than cumulative
volume. In this case, the capability to manage
the drivers of learning generates heterogeneous
rates of learning by doing across firms even if
cumulative volume in the firms is identical (Adler
and Clark, 1991; Hatch and Mowery, 1998). In
other words, firms can cede the market share bat-
tle and still win the cost war. For example, from
1989 to 1999, Chrysler has been the lowest-cost
(most profitable) U.S. automaker with the least
market share, while GM has been the highest-
cost (least profitable) automaker with the high-
est market share (Dyer, 2000). Similarly, Toyota
has achieved cost advantages on low unit vol-
umes with its U.S. suppliers by actively transfer-
ring cost reduction know-how to suppliers (Dyer
and Hatch, 2004). The biggest obstacle to statis-
tical analysis of the determinants of the learning
curve is the proprietary nature of the required data.
A few studies have overcome this obstacle and
have enabled us to peer inside the ‘black box’
of learning and see the importance of engineering
activities (Adler and Clark, 1991; Hatch and Mow-
ery, 1998), experimentation (Bohn, 1995; Pisano,
1994), process innovation management (Hatch and
Mowery, 1998; Pisano, 1996; Pisano, Bohmer, and
Edmondson, 2001; Terwiesch and Bohn, 2001),
quality improvement (Ittner, Nagar and Rajan,
2001; Lapré, Mukherjee, and Van Wassenhove,
2000; Zangwill and Kantor, 1998), and workforce
training (Adler and Clark, 1991) as determinants
of learning performance.

For the determinants of learning to confer com-
petitive advantage, they must be protected by some
isolating mechanism. Firm-specific human capital
is a resource that is fundamental to knowledge
creation through learning by doing and is not read-
ily expropriated by rival firms (Hitt et al., 2001).
Specific human capital is typically the product of
individual learning and, in turn, enhances ongo-
ing learning within the firm. Thus, human capi-
tal may be costly to imitate because it is firm-
specific. Competitive advantage realized through
human capital may be sustained, even if some of
the knowledge is imitable, because human capi-
tal provides continuing superiority in the rate of
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knowledge creation and cost reduction over the
life of a product and across multiple generations
of products. As Stata (1989) observed, ‘The rate
at which organizations learn may become the only
sustainable source of competitive advantage’.

Prior research has shown that some types of
knowledge are more likely to confer advantage.
While knowledge within firms may reside in many
forms and places, it is ultimately people who must
learn (Grant, 1996; Hitt et al., 2001) and human
resources become a primary repository of both
codifiable and tacit knowledge (Lado and Wil-
son, 1994; Prescott and Visscher, 1980; Tomer,
1987). Codified knowledge can be articulated and
is at risk of expropriation, while tacit knowledge
can not be articulated and is isolated from rivals
because it is embedded in the firm’s routines,
human skills, and relationships (Liebeskind, 1996;
Nelson and Winter, 1982; Polanyi, 1967; Winter,
1987; Zander and Kogut, 1995). Codified knowl-
edge typically sustains competitive advantage only
to the degree that firms are successful in protecting
it. However, even when knowledge is codifiable
and people and processes are seemingly easy to
imitate, more effective and rigorous implementa-
tion and monitoring of codified processes may pro-
duce sustainable advantages (Knott, 2003). Tacit
knowledge may be so well protected from imi-
tation that it is difficult to diffuse even within the
firm where it originates (Hatch and Mowery, 1998;
Szulanski, 1996).

The role of human resources in creating com-
petitive advantage through learning is amplified
by their intertwined relationship with tacit knowl-
edge. Technical knowledge created through learn-
ing by doing in a high-technology environment
such as semiconductor manufacturing is partially
codified into refinements in process specifications
and process control limits. The rest of the knowl-
edge remains tacit in the understanding and skills
of the employees. Generally speaking, knowledge
acquired through engineering analysis will be cod-
ified, while the knowledge residing in equipment
operators and technicians, obtained through repe-
tition and experience (observations that amount to
informal, natural experiments) is tacit knowledge.
This knowledge serves to improve further learning
in the form of codification of unknown elements of
the process technology. The objective of this paper
is to identify the factors that influence the size of
this reservoir of firm-specific knowledge and the

impact of bringing this potentially untapped strate-
gic resource to bear on the learning activities of
the firm.

Where does human capital come from and how
do firms manage it to competitive advantage?
Human capital begins with human resources in the
form of knowledge and skills embodied in peo-
ple. The stock of human capital in a firm comes
from its employee selection, development, and use
(Koch and McGrath, 1996; Snell and Dean, 1992).
Selection, development, and use are a sequence of
human resource management functions that rep-
resent increasing human capital, increasing firm
specificity, and decreasing imitability. In other
words, these human resource management func-
tions may contribute to sustainable competitive
advantage. Initially, firms must identify appli-
cants in the external job market that promise
to be productive employees. The human capital
embodied in these new employees is not firm-
specific so firms work to develop the employees,
making investments in specialized human capital
that improve their productivity and subsequently
improve the rate of learning in the firm. How-
ever, hiring and developing human resources is not
enough to ensure competitive advantage; deploy-
ment is critical. Unless the human resources are put
to productive use, their potential goes unfulfilled
(Huselid, 1995; Penrose, 1959). Finally, for human
capital to create sustainable competitive advantage,
rivals must be prevented from quickly and cost-
lessly expropriating the value of the human capital
(Barney, 1991).

Human resource selection: Hiring external
sources of human capital

A new job applicant can be thought of as the clay
that, through investments in firm-specific knowl-
edge, is shaped into a productive resource in
the firm’s particular environment. Better educated
human resources are expected to result in more
productive human capital (Hitt et al., 2001). In
this case, the level of education is a proxy for
employee cognitive skills (e.g., absorptive capac-
ity) and a motivational need for achievement.
While education should increase the ability of
workers to acquire and employ specific knowl-
edge, education will not typically result in com-
petitive advantage if similarly qualified human
resources are readily available to rivals. Com-
petitive advantage requires some strategic factor

Copyright  2004 John Wiley & Sons, Ltd. Strat. Mgmt. J., 25: 1155–1178 (2004)



www.manaraa.com

Human Capital as Competitive Advantage 1159

market imperfection to prevent rivals from obtain-
ing equally qualified human resources (Barney,
1986; Koch and McGrath, 1996; Lado and Wilson,
1994). In local labor markets, human resources
are generally mobile and human resources of sim-
ilar education can be acquired by all firms. How-
ever, labor is typically not fully mobile across
global product markets. Factors that prevent labor
mobility include: (1) search costs—the cost of
finding jobs that require the employee’s skill set
and offer adequate pay; (2) uncertainty about job
success—usefulness of the employee’s skill set
and compatibility with new co-workers cannot be
known with certainty before joining the new firm;
(3) social costs—removal from existing social net-
works, disruption of family members’ social cir-
cles, costs of relocating, etc. Thus, in global prod-
uct markets like the semiconductor industry, firms
face substantial differences in local job markets
that persist due to local customs, infrastructure,
education systems, etc. These labor market imper-
fections, in the form of geographic uniqueness
(Barney, 1986), provide an advantage to firms in
regions with better educated employees willing to
work for relatively low wages and may penalize
firms in regions with a scarcity of qualified work-
ers. Better educated employees will learn more
quickly and, in turn, contribute more to the firm’s
learning activities.

Hypothesis 1a: Higher human resource educa-
tion levels increase learning by doing perfor-
mance.

Clearly, education level is an imperfect mea-
sure of the productive potential of human resources
since employees with identical education lev-
els exhibit heterogeneous productivity ex post.
Firms may generate competitive advantage by
selecting, either through foresight or luck, human
resources that are undervalued in the market (Bar-
ney, 1986). While firms may occasionally select
superior human resources through luck, firms that
are consistently luckier than others reflect an
underlying capability in identifying productive
human resources. Screening tests during the hir-
ing process offer the potential for superior fore-
sight in evaluating human resources that are well
suited for the firm’s specific environment (Hunter
and Schmidt, 1982; Ichniowski and Shaw, 1999;
Koch and McGrath, 1996). In addition to identify-
ing high-quality candidates, screening tests may be

able to distinguish applicants with specific skills
that are appropriable in the firm’s idiosyncratic
environment. In either case, such tests serve to
identify needed skills and competencies, such as
math, statistics, problem-solving and team skills,
that will aid in the adaptation of the new employee
to the new firm environment.

Hypothesis 1b: Pre-employment screening tests
improve learning by doing performance.

Human resource development: Internal
investments in human capital

In addition to trying to generate advantage through
the acquisition of superior human resources, firms
may attempt to develop superior human resources
through investments in training. Firms without
superior foresight into the productivity of human
resources may be able to earn competitive advan-
tage by building the firm-specific human capital
of its employees through training. To the degree
that internal development results in human cap-
ital that is firm-specific, the human capital will
be inimitable because rivals will not be able to
put the human capital to the same firm-specific
use (Klein et al., 1978; Mahoney and Pandian,
1992). As training builds firm-specific human cap-
ital it speeds the rate at which human resources
learn their duties, thereby improving their produc-
tivity. With greater tacit knowledge in their role
in complex processes, human resources can make
meaningful contributions to the improvement of
these complex processes and accelerate the firm’s
descent down the learning curve.

Although firm-specific human capital may be
inimitable, firms may be able to substitute train-
ing programs of their own to develop rival firm-
specific human capital. For competitive advantage
to persist, some isolating mechanism must preserve
the value of the training program itself. Training is
an investment that speeds the flow of both codified
and tacit knowledge into the stock of human capi-
tal. When rivals initiate similar training programs,
their flow of substitute knowledge begins but the
stock of human capital can not be imitated without
long-term, sustained flows. Thus, time compres-
sion diseconomies prevent rivals from immediately
replicating the value of training programs (Dier-
ickx and Cool, 1989).
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Hypothesis 2: Greater investments in human
resource training increase learning by doing
performance.

Human resource deployment: Effective use of
human capital

Finally, learning advantages can be generated as
strategic human resources are effectively deployed
within the firm (Amit and Schoemaker, 1993;
Lado, Boyd, and Wright, 1992; Mahoney and Pan-
dian, 1992; Penrose, 1959). Human resources are
frequently underutilized (Huselid, 1995) and it is
no trivial task for managers to identify employee
skills and deploy them to their most productive
tasks to improve firm performance (Penrose, 1959;
Prescott and Visscher, 1980; Tomer, 1987). The
capabilities required for this matching of skills
to tasks prevent immediate imitation by rivals. In
addition to the challenge of matching skills to jobs,
effective resource deployment is often difficult to
imitate because of the complex social relations and
complementary task-specific human capital that
evolve as deployment continues (Amit and Schoe-
maker, 1993). Firms that both (a) deploy more
personnel to learning activities, and (b) encourage
workers to allocate a greater percentage of time
to learning activities, should increase learning by
doing performance.

Hypothesis 3: Greater deployment of human
capital to learning activities increases learning
by doing performance.

Inimitability of human capital

Can firms bypass time-consuming investments in
human capital by poaching human resources from
rivals? As was emphasized earlier, it is the firm-
specificity of certain human capital that holds
the greatest promise for contributing to compet-
itive advantage (Aharoni, 1993; Becker, 1975;
Mahoney, 1992). In the theory of appropriable
rents, firm-specific human capital can earn ‘quasi-
rents’, the difference between the first- and second-
best use, when the resource is employed in the
environment where it was developed (Klein et al.,
1978). Thus, when an individual with firm-specific
human capital moves to another firm, only a por-
tion of the individual’s accumulated knowledge
is applicable in the new environment (Becker,

1975). At best, the rest of the individual’s expe-
riences, skills, and knowledge can earn only the
‘second-best’ value and may actually impede the
successful integration and development of new
employees in the new manufacturing environment.
This problem has been addressed by scholars of
individual-level learning in their study of the need
for ‘unlearning’ when existing knowledge reduces
performance (Nystrom and Starbuck, 1984; Star-
buck, 1996). To illustrate, when Toyota estab-
lished plants in the United States, it chose not
to hire employees with prior automotive experi-
ence because of the ‘unlearning’ problem. Thus
the processes associated with forgetting (Argote
and Epple, 1990; Bailey, 1989; Shafer et al., 2001)
and relearning (retraining) may be an obstacle to
firms in their quest to develop a stock of new firm-
specific human capital that contributes to learning
performance.

Hypothesis 4a: Greater prior industry experi-
ence in newly hired human resources reduces
learning by doing performance.

For a rival to fully and quickly imitate the
value of human capital, the rival must be able
to acquire, develop, and deploy the human capi-
tal in a short amount of time. Because employee
turnover requires firms to engage in these human
resource activities, it is a natural context to test
the imitability of human capital. If human capital
is not protected from imitation, employee turnover
will have virtually no impact on firm performance.
If, however, human capital is firm-specific, socially
complex, path-dependent, and faces time compres-
sion diseconomies, firms with high turnover will
suffer a significant competitive disadvantage rela-
tive to firms with more stable workforces where
human capital can be developed and deployed. As
human resources leave they take their tacit knowl-
edge with them and are replaced by new employees
without the firm-specific knowledge required to
significantly contribute to learning by doing.

Hypothesis 4b: Greater human resource turn-
over reduces learning by doing performance.

The human capital factors and their hypoth-
esized effects on learning are summarized in
Figure 1.
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Figure 1. Graphical representation of the model

MODEL OF HUMAN CAPITAL AND
LEARNING PERFORMANCE

Background on the empirical setting

Heterogeneity in resources and isolating mecha-
nisms that protect resources from imitation also
pose barriers for scholars to observe and mea-
sure their impact on firm performance. To partially
overcome these barriers, we focus this study within
a single industry: semiconductor manufacturing.
Drawing upon detailed observations of activities
and performance obtained through questionnaires
and field interviews, we estimate the long-term
performance effects of heterogeneous human cap-
ital. Limiting the scope of analysis to a single
industry reduces the generalizability of the results
but allows for more accurate measurement of
human capital and performance (Becker and Ger-
hart, 1996; Hitt et al., 2001). A brief description
of the important details of semiconductor manu-
facturing follows.

An integrated circuit, commonly known as a
chip, is constructed on a wafer of silicon as a com-
plex array of conductive and insulating materials,
patterned to provide the intended function. Since
the product components are complex and minus-
cule,5 manufacturing processes inevitably incur

5 Minimum feature sizes of semiconductors are as small as
0.15 µm; a human hair has an average diameter of 50–100 µm.

yield losses of two types: line yield losses and die
yield losses. Line yield measures the percentage
of wafers entering the production process that suc-
cessfully pass through all processing steps. Line
yield losses occur when wafers break or when
severe processing errors force the wafer to be
scrapped. On all successfully processed wafers,
some of the chips do not work. The percentage of
functional chips on a wafer is called the die yield.

Once the wafer is processed, each integrated cir-
cuit is tested for functionality and performance.
Failures represent die yield losses and can gener-
ally be attributed to ‘random particles’ or ‘paramet-
ric processing’ problems. Random particles rain
down onto the wafer and cause shorts between con-
ductive lines or holes within them. Particles orig-
inate from the ambient air, equipment, and man-
ufacturing personnel and are eliminated through
targeted air filtration systems. Since the particles
are microscopic, their sources are difficult to find.
In new manufacturing processes, parametric pro-
cessing problems are typically more pervasive than
random particles. Many process steps are too com-
plex for science to accurately specify the process
parameters a priori, resulting in seemingly ran-
dom yield losses as inputs interact in unexpected
ways and fail. The problem is exacerbated by
process control limitations that allow unintended
input interactions even when the optimal parame-
ters are known.
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It is not uncommon for yields for new semi-
conductor processes to start as low as 10 percent,
which inflates the manufacturing cost of a good
chip by a factor of 10. Eliminating these yield
losses generates substantial reductions in manu-
facturing costs as yields approach 100 percent.
Yield losses are primarily eliminated through engi-
neering analysis and experiments that identify and
solve particle sources, discover unknown param-
eters, and improve process control. Since yield
improvements are typically permanent solutions
to yield losses, the resulting cost reductions are
permanent—an identifying characteristic of learn-
ing by doing. Learning by doing through yield
improvement clearly reduces costs and provides
sustainable competitive advantage if there is per-
sistent heterogeneity in rate of yield improvement.
Understanding differences in the rate of learning
(yield improvement) requires knowledge of the
process by which learning occurs.

Traditionally, learning by doing is modeled as
though cumulative production volume alone is suf-
ficient to reduce costs. It is doubtful whether pro-
duction volume is sufficient to characterize the
learning curve in semiconductor manufacturing
because yield improvements are also caused by
engineering analysis. Thus, as Hatch and Mowery
(1998) have shown, cumulative production volume
and cumulative engineering analysis in combina-
tion are the key determinants of learning by doing
in semiconductor manufacturing. These variables
are not proxies for manufacturing experience, but

rather represent the means by which yields and
costs improve. This insight has profound implica-
tions for seeking competitive advantage through
learning by doing because learning is the prod-
uct of deliberate learning activities rather than the
byproduct of production. Firms that manage the
learning process have an advantage over firms that
simply manage learning through maximization of
market share.

Firms earn a competitive advantage when they
move down the learning curve more quickly than
their rivals. Firms that consistently outperform
their rivals through management of learning sus-
tain their cost advantage over the long term (Dyer
and Hatch, 2003). All semiconductor firms per-
form engineering analysis of production volume
to improve yields, but some are consistently supe-
rior. Figure 2 shows reductions in a measure of
yield losses for 30 semiconductor manufacturing
processes in 16 firms. It is clear that the levels and
rates of improvement in yield losses vary widely
between the different processes. The main contri-
bution of this study is to determine the degree to
which these persistent differences in the rates of
learning by doing are a result of differences in the
management of human capital.

A mathematical model of knowledge and
learning

While the traditional form of the learning curve,
given in Equation 1, has been used extensively
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Figure 2. Defect density trends of semiconductor manufacturing processes
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since it was first introduced, it has some well-
known limitations. Several features of observed
learning curves have been shown to fit poorly with
the traditional learning geometry. For example,
costs are sometimes observed to settle on a ‘plateau
level’ that is not allowed with Equation 1, which
falls asymptotically to zero (Carr, 1946; Asher,
1956; Conway and Schultz, 1959; Baloff, 1966,
1971; Hall and Howell, 1985; Muth, 1986). Sim-
ilarly, the traditional model is not well suited to
incorporate the possibility of non-linearities (Carl-
son, 1961, 1973; Yelle, 1979) or prior learning,
the omission of which results in biased estimates
(Montgomery and Day, 1985). These limitations
have led to the proposal of alternative functional
forms (Carlson, 1961, 1973; Yelle, 1979) such as
the ‘Stanford B’ model, which explicitly controls
for prior learning (Garg and Milliman, 1961). Use
of the traditional form has persisted in spite of its
limitations presumably because it is linear in logs
and can be estimated easily with OLS.

The learning by doing model we use is based on
the one used by Hatch and Mowery (1998). Cost
is assumed to be a function of yields which are a
function of learning by doing activities. A common
assumption in the semiconductor industry is that
the unit variable cost of manufacturing a chip is
constant whether the die functions or not. Since
the salable chips must bear the cost of scrapped
output, the unit cost of producing good chips gets
inflated by the yield losses:

AV C = u

y
= u

LY ·DY
(2)

where u is the constant unit cost, y is net yield, LY
is line yield, and DY is die yield. To estimate the
learning curve for semiconductors, it is sufficient
to estimate the line and die yield improvement
curves as functions of the determinants of learning
by doing, including human capital. Due to data
limitations, only improvements in die yield will
be analyzed in this study.

Consistent with the earlier discussion of yield
loss and improvement, the accumulation of tech-
nology-specific knowledge is summarized by the
cumulative number of wafers fabricated and the
cumulative number of engineers devoted to pro-
cess improvement. Let CVt denote the number
of wafers produced for a given process between
time zero (the date of the first observation) and
time t and CEt denote the cumulative number

of engineers for a process. Obviously, the level
of process-specific knowledge is unobservable, but
we can make use of it through the learning index
Lt that is defined by the level of manufactur-
ing experience:

Lt = a·CVt + b·CEt + L0 (3)

where a ≥ 0, b ≥ 0, and L0 is the existing level
of knowledge or experience in the first period. L0

embodies the learning that has been accumulated
prior to the first observation of the process.6

Before the learning index can be integrated into
the yield-based learning curve, die yield must be
normalized to correct for its dependence on the die
size. To see the relationship between die yield and
die size consider two wafers with identical defects
scattered across the wafers. If the chips on one
wafer are larger than on the other, die yield for
the larger chips will be lower because the number
of good chips will remain constant while the total
number of chips falls. To standardize their measure
of manufacturing performance, practitioners focus
on the density of fatal defects per cm2 of silicon
rather than on die yield. The ‘Murphy model’ of
defect density7 defines the relationship between die
yield and the average number of fatal defects per
cm2 as

DY =
[

1 − e−A·DD

A·DD

]2

(4)

where A is the die area and DD is the defect den-
sity parameter. An increase in the defect density
causes an increase in defects. As engineers and
operators acquire technology-specific knowledge,
the density of defects declines and die yield rises.
In this light, defect density is a good measure of

6 It is difficult to imagine a situation where some manufacturing
knowledge/experience does not exist before the first observa-
tions. Bahk and Gort (1993) study learning by doing in new
plants; however, even for a new product and manufacturing pro-
cess, previous manufacturing experience with related products
is almost certainly embedded in the new product. Hatch and
Reichelstein (2003) show how the learning curve and the cost
elasticity of experience are influenced by the unobserved history.
7 The list of commonly used models includes the Poisson model,
the Murphy model (Murphy, 1964), and the negative binomial
model (Okabe, Nagata, and Shimada, 1972; Stapper, 1973).
Murphy extended the Poisson model to account for the observed
clustering of defects on wafers. In particular, his model assumes
a triangular approximation of the Gaussian distribution. See
Stapper (1989) for an overview of the defect density literature.
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learning by doing because it illuminates the rela-
tionship between knowledge and yield and because
it maps directly to die yield and cost.

The objective is to identify and evaluate the
factors that reduce the defect density parameter.
To incorporate reductions of the defect density
parameter into the learning curve, first assume
that the learning curve is additively separable into
a dynamic (learning by doing) component and a
static component:

DDt = h1(Lt) + h2(st ) (5)

where the learning by doing component h1(·)
depends on the unobservable learning index Lt

defined in Equation 3. The static component h2(·)
includes the control variables st that do not directly
affect the rate of learning by doing but still influ-
ence the defect density. A negative exponential
functional form is chosen for h1(Lt ), while h2(st )

is assumed to be linear.8 This gives

DDt = γ + ψ · e−(a·CVt +b·CEt +L0) + st

After some algebra to substitute the observable ini-
tial defect density value DD0 for the unobservable
level of starting knowledge, the specification of the
basic learning curve is

DDt = γ + e−(α·CVt +β·CEt ) · [DD0 − γ − s0] + st

(6)

where DD0 is the starting defect density value
and s0 gives the starting values of the control
variables.

To incorporate the influence of the human capital
variables on learning performance it is only nec-
essary to add the human capital variables to the
learning index in Equation 3. The direct effect of
human capital on knowledge and learning is given
by the (direct) linear parameter, chc. Human capi-
tal is also expected to influence learning indirectly
through its effect on the productivity of the basic
learning drivers (cumulative volume and cumu-
lative engineering) as human capital contributes
more or less knowledge to learning activities. This
indirect effect is specified through an interaction

8 The use of a negative exponential function for h1(·) diverges
from the more traditional specification in Equation 1. However,
Levy (1965), Stata (1989), and Zangwill and Kantor (1998) have
confirmed the appropriateness of an exponential functional form
to model learning by doing.

term between the human capital variable and the
cumulative volume and cumulative engineering
variables. Solving the model as described above,
the learning curve as a function of human capi-
tal becomes

DDt = γ + e−(αCVt +βCEt +HC(αhcCVt +βhcCEt +chc))

× [DD0 − γ − s0] + st (7)

where HC is a proxy for each of the hypothe-
sized human capital variables. This specification
of the learning curve is the basis for testing the
hypothesized relationships between human capital
and learning performance.

DATA AND METHODS

The data used to test the hypotheses described
in the previous section were obtained through
the Berkeley Competitive Semiconductor Manu-
facturing (CSM) Program.9 The data were gath-
ered through questionnaires sent to plant man-
agers and follow-up interviews at fabrication facil-
ities (fabs) of 25 semiconductor manufacturing
facilities located in the United States, Asia, and
Europe. Firms were initially selected from a list
of ‘world class’ manufacturers and contacted to
assess their willingness to participate. Once the
firm agreed to participate, the questionnaire was
sent to acquire fab-specific information on prod-
ucts, processes, and processing equipment. It also
obtained the fab’s history of monthly or quarterly
wafer starts, yields, personnel histories, and major
cost categories. Once the completed questionnaire
was received, a team of researchers visited the fab
for plant tours and interviews to identify the prac-
tices that generate the performance measured in
the questionnaire data. Descriptive statistics and
the Pearson correlation matrix for all variables are
reported in Table 1.

Because the questionnaire was not sent to any
firm unless they first agreed to participate in the
study, the response rate was 100 percent. Every fab
that was contacted and invited to participate agreed
to participate in the study. The selection criteria
of choosing world class manufacturers is not a
random sample of the population of semiconductor

9 For a more detailed description of the Competitive Semicon-
ductor Manufacturing project, see Leachman (1996).
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Table 1. Descriptive statistics and correlation matrix for the sample

Variable Units Mean S.D. Min. Max.

(1) Defect density fatal defects/cm2 1.01 1.06 0.11 7.49
(2) Cumulative volume 1000 wafer starts 93.55 119.52 0.05 821.59
(3) Cumulative engineers allocated fte engineers 384.27 394.31 0.90 1938.20
(4) Clean room grade maximum particles/foot3 1050.40 2918.20 1.00 10000.00
(5) Mask layers number of layers 13.15 5.81 5.00 29.00
(6) Equipment vintage ave. purchase date (year) 88.25 1.78 85.57 91.36
(7) Technical education High/Med/Low (2/1/0) 0.20 0.40 0.00 1.00
(8) Experience required H/M/L (2/1/0) 0.19 0.39 0.00 1.00
(9) Screening test Yes/No 0.73 0.44 0.00 1.00

(10) SPC training H/M/L (2/1/0) 1.11 0.92 0.00 2.00
(11) Vendor training Yes/No 0.22 0.37 0.00 1.00
(12) Machine qualification H/M/L (2/1/0) 1.06 0.64 0.00 2.00
(13) Team involvement H/M/L (2/1/0) 0.98 0.77 0.00 2.00
(14) Troubleshooting H/M/L (2/1/0) 0.96 0.92 0.00 2.00
(15) Turnover annual percentage 21.08 31.53 4.00 180.00

Number of observations = 702; Number of technologies = 49

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

(1) 1.00
(2) −0.34 1.00
(3) −0.32 0.40 1.00
(4) −0.11 −0.00 0.31 1.00
(5) 0.15 0.12 −0.03 0.00 1.00
(6) −0.52 0.37 0.25 0.51 0.30 1.00
(7) −0.23 0.41 −0.10 −0.17 0.66 0.60 1.00
(8) 0.66 −0.27 −0.31 −0.17 0.19 −0.58 −0.24 1.00
(9) −0.54 0.32 0.35 0.17 −0.13 0.46 0.30 −0.79 1.00

(10) −0.40 0.24 0.30 0.32 0.52 0.64 0.48 −0.53 0.54 1.00
(11) −0.31 0.15 −0.18 −0.20 0.19 0.43 0.62 −0.28 0.35 0.32 1.00
(12) −0.03 0.28 −0.12 −0.56 0.26 −0.15 0.43 −0.04 0.35 0.27 0.20 1.00
(13) −0.40 0.29 0.08 −0.43 0.32 0.27 0.66 −0.45 0.57 0.44 0.50 0.56 1.00
(14) −0.33 0.21 0.08 −0.32 0.53 0.30 0.57 −0.37 0.37 0.74 0.43 0.61 0.75 1.00
(15) 0.05 −0.15 0.11 0.56 −0.09 0.19 −0.25 −0.05 −0.21 −0.02 −0.25 −0.61 −0.34 −0.40

manufacturers but it does provide insights into the
practices of the highest-performing firms.10 The
data employed in the empirical analysis are drawn
primarily from the responses to the questionnaire
and are frequently updated based on the follow-up
interviews. Three firms did not provide all of the
data necessary to construct the variables used in
this study and had to be dropped.

10 The fact that the sample consists of largely high-performing
firms means that we have minimized variance of the depen-
dent (performance) variable. Thus, the tests of our hypothe-
ses are actually conservative tests of the underlying theoretical
constructs.

Dependent variable

To control for the influence of die size on die yield,
defect density is used as the dependent perfor-
mance variable to measure learning. Defect den-
sity is an appealing measure of learning because
virtually all defects are the result of some lack
of knowledge and, as knowledge grows, defects
fall resulting in direct reductions in manufacturing
cost. The fabs in the sample reported either their
monthly die yield or defect density.11 When die

11 The earliest participants in the CSM study were requested to
report quarterly historic data on volume and yields. Subsequently
the questionnaire was revised to request monthly data. This does
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yield was reported, it was converted to the Mur-
phy defect density using Equation 4. When fabs
reported defect densities using a formula different
from the Murphy model, the defect density was
converted to die yield and then converted to the
Murphy defect density.12

Independent variables

Production volume is measured by the number
of wafers that enter the production process per
period. The cumulative volume variable is the sum
of wafer starts from the initial observation to the
current period. These values come directly from
the data reported by the fabs. For convenience
in estimation, the cumulative volume variable is
rescaled to represent units of 1000 wafers.

Unfortunately, unlike production volume, the
number of full-time engineers devoted to the pro-
cess during the period is not reported in the ques-
tionnaire. In fact, it is clear from follow-up inter-
views that this information is not recorded. The
fabs invariably responded that they do not track the
time that engineers spend on individual processes,
but rather that engineers work on the most press-
ing problems. In order to estimate the influence
of cumulative engineering on yields, we employ a
rule to allocate the engineering staff to processes.
If there are no new processes in the fab, each
process is allocated a share of total engineering
full-time equivalents (FTEs) that is proportional to
the share of total volume accounted for by that
process. If a new process has been introduced, we
assume that the new process receives 75 percent
of the engineering FTEs for the first year and then
receives its portion of engineering according to its
relative volume.

While this allocation scheme is arguably ad
hoc, the fabs reported that this allocation was

not cause a problem for estimating the learning curve as long as
all the variables are defined by the appropriate period length.
12 A data measurement problem has forced us to exclude line
yield as a dependent variable in spite of its obvious impact on
cost and performance. This omission is unfortunate but does not
introduce a bias into our results. Line yield typically follows a
learning curve that depends on the same factors as defect density,
namely cumulative volume, engineering analysis, and human
resources, In short, line yield typically increases as defects
decrease. As long as the learning drivers that reduce defects
are not also reducing line yields (and raising costs), there is no
systematic bias introduced by employing defect density as the
only dependent variable.

consistent with the time allocation of their engi-
neers to problem-solving activities.13 In the months
required to ‘characterize’ and ‘ramp-up’ a new pro-
cess, the most pressing problems arise with the
new process and many of the fab’s engineering
resources are devoted to the effort. When there are
no new processes in the fab, the allocation rule is
conservative with respect to estimating the effect
of engineering on learning because, in general,
newer processes have relatively lower volumes but
require more engineering effort in adjusting pro-
cess specification limits.

Data for the human capital variables were
obtained from both the mailed questionnaire and
the on-site interviews conducted during visits to
the fabs. Each visit included interviews with at
least one employee in each job category as well
as human resource managers. A survey guide was
used during interviews to ensure that all of the
topics were fully covered. Most of the variables
are coded as yes/no or with a three-point ordinal
scale typically expressed as high/medium/low. A
description of the human capital variables and their
coding is given in the Appendix.

Human resource selection

The human resource selection hypotheses are tested
with data on education and screening exams for the
hiring process. The technical education variable
indicates whether a technical education (techni-
cal high school or technical associates degree) is
required. It also reports the degree to which direct
labor employees have technical degrees even if
they are not required. The screening test variable
is a simple binary variable that indicates whether
the fab uses a test to screen for technical skills in
the hiring process.

Human resource development

The human resource development hypothesis is
operationalized through the use of three measures
of human resource training: statistical process con-
trol, equipment vendor training, multiple machine

13 While firms generally do not track the time engineers spend
on various processes, in a recent site visit, one firm volunteered
that on average a new manufacturing process takes about 75
percent of engineering resources during the initial stages. This
unsolicited comment lends credence to the allocation scheme.
To test the sensitivity of the estimates to the ad hoc 75 percent
allocation rule, we varied the percentage rates allocated in the
initial period and found the estimates to be stable.

Copyright  2004 John Wiley & Sons, Ltd. Strat. Mgmt. J., 25: 1155–1178 (2004)



www.manaraa.com

Human Capital as Competitive Advantage 1167

qualification. The statistical process control (SPC)
training variable refers to whether equipment oper-
ators are required to undergo on-the-job training
in statistical process control procedures related to
their job tasks. The SPC training variable also
indicates the degree to which the fab considers
SPC training to be a priority. The vendor training
variable reports simply whether operators receive
equipment-specific training from a vendor. The
multiple machines qualification variable reports the
average number of machines that an operator is
qualified to operate within his or her area and is
measured with a three-point scale.

Human resource deployment

Human resource deployment is operationalized
as the proportion of operators that participate in
problem-solving teams and the proportion of oper-
ator time spent troubleshooting process control
problems (Arthur, 1994; Ichniowski and Shaw,
1999). When equipment operators acquire suf-
ficient human capital to participate actively in
problem-solving activities,14 more information is
available for analysis and decision-making and
engineering resources are freed to focus on more
difficult projects. The proportion of operators in-
volved in teams is a reasonable measure of the
amount of problem-solving that operators do. It
also provides an estimate of the specific human
capital in the fab because operators must have a
minimum level of skills to participate meaning-
fully on troubleshooting teams. The troubleshoot-
ing measure of deployment reports the estimated
average share of their time that equipment oper-
ators spend troubleshooting ‘out-of control’ situa-
tions with their equipment.15

Inimitability

Inimitability is tested with data on prior firm-
specific experience and operator turnover. The
prior experience variable measures whether firms
require experience for hiring and the degree to
which employees have previous experience in

14 In many cases, these problem-solving opportunities focus
on yield improvement but there are a number of other areas
where operators are able to participate in solving problems,
such as cycle time, on-time delivery performance, and equipment
performance.
15 Out-of-control events occur when SPC data indicate that pro-
cessing parameters have fallen outside predetermined boundaries.

their production area, semiconductor manufactur-
ing, and unrelated manufacturing. The operator
turnover variable is the average annual percent-
age of full-time equivalent (FTE) operators that
are replaced.

Control variables

The control variables are included in the static
component of the model and influence the level
of defects but not the rate of improvement in
defects through learning. These variables include
the cleanliness of the clean room CR, the number
of mask layers ML, and the equipment vintage Vin.
The clean room grade, measured by the maximum
number of particles per cubic foot of clean room
space, directly influences the incidence of fatal
defects due to particulate contamination. The num-
ber of mask layers is a measure of the total num-
ber of steps in the process—more process steps
increase the probability of errors and defects. The
equipment vintage variable indicates the average
installation date for processing equipment. Newer
equipment, with a ‘higher’ vintage value, gener-
ally provides greater process control which reduces
processing defects. As new equipment is installed
the average vintage of equipment in the fab rises
and overall process control is improved. Thus, the
density of defects is expected to fall. In the few
cases where fabs installed used equipment rather
than new, the original purchase date (age) of the
equipment was obtained.

The hypotheses are tested by estimating each
specification of the learning curve using a non-
linear maximum likelihood estimator. The initial
parameters for the maximum likelihood estima-
tion were varied over a wide range to ensure that
the estimates represent the global maximum of the
likelihood function. To control for cross-sectional
fixed effects in the panel data, we include a dummy
variable for each process technology in the sam-
ple. To control for expected autocorrelation over
time within panels, an autocorrelation correction
is also employed.

RESULTS AND DISCUSSION

Results of the regressions to test the hypotheses
are reported in Tables 2–4. In the tables, esti-
mated coefficients and their asymptotic t-statistics
are reported for each model of human capital and
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Table 2. Impact of human resource selection on learning performance

Coefficient Basic model Technical education Screening tests

Basic learning effects
γ 5.2967 8.3147 3.5874
h1(·) constant (1.7390) (2.4353) (1.1644)
α 0.00603 0.006785 0.006579
Cumulative volume (2.0044) (2.1007) (2.2247)
β 0.00646 0.006354 0.007938
Cumulative engineers (11.0910) (10.636) (8.6929)

Learning by doing × Human capital interaction effects
αhc 0.001746 −0.005435
Cumulative volume (0.1802) (−1.2701)
βhc 0.001504 −0.005792
Cumulative engineers (0.3716) (−5.0515)
chc 0.46588 0.35209
Constant (1.7882) (3.0240)

Control variables
Clean room −0.000113 −0.000066 −0.000013

(−1.2864) (−0.7267) (−0.2682)
Mask layers −0.007627 −0.03284 −0.005355

(−0.5592) (−1.7764) (−0.2963)
Equipment vintage −0.05892 −0.09067 −0.042349

(−1.6947) (−2.3675) (−1.2281)
R2 0.9682 0.9684 0.9707
LR-test statistic 0.0000 3.6986 52.0484
ρ 0.6459 0.6270 0.5951

Number of observations = 702
Number of process technologies = 49
Values in parentheses are asymptotic t-statistics

learning by doing interactions. The number of
observations n and the R2 between the observed
and predicted values are also reported. A likeli-
hood ratio test was performed on each regression
to test whether the three coefficients from each
human capital variable significantly improve the
model. The test verifies whether the log-likelihood
value of the unrestricted model (with human cap-
ital coefficients) is significantly larger than log-
likelihood value of the model where the human
capital coefficients are restricted to be zero (basic
model). The test statistic has a χ2 distribution with
three degrees of freedom. The estimated first-order
autocorrelation coefficient, ρ, is reported with the
estimates. Estimated coefficients for the 49 fixed-
effect (dummy) variables are not reported to pro-
tect the proprietary nature of the data. Care must
be taken in interpreting the levels and signs of
the estimated coefficients due to the nature of
the functional form in which they are estimated.
A positive coefficient on variables included in
the dynamic portion of the defect density spec-
ification, h1(Lt) (learning variables), indicates a

reduction in defects (increase in yield) rather than
an increase. However, for variables in the static
portion of the learning curve h2(·) (control vari-
ables), a positive coefficient indicates an increase
in defects.

Results for the basic learning curve, Equation 6,
are reported in the first column of Table 2 and ver-
ify the underlying learning curve hypothesis that
cumulative volume and cumulative engineering
together drive learning. Given the positive coef-
ficient for the cumulative volume variable, we see
that defect density is improving (falling) as cumu-
lative volume increases. The coefficient is also
statistically significant. The cumulative engineer-
ing variable is also significant in reducing defects.
These coefficients define the rate of learning by
doing for the fabs in the sample and underscore
the importance of engineering analysis as a deter-
minant of learning by doing in semiconductor man-
ufacturing, reconfirming the idea that the benefits
of learning come not only from repetition, but
also from deliberate activities aimed at learning.
Note that the estimated coefficients for cumulative
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Table 3. Impact of human resource development on learning performance

Coefficient SPC training Vendor training Mult. machine
qualification

Basic learning effects
γ 9.2455 7.8048 12.758
h1(·) constant (2.6605) (2.3105) (4.4690)
α 0.002098 0.006531 −0.014974
Cumulative volume (0.7434) (1.8789) (−2.2021)
β 0.007199 0.006352 0.006224
Cumulative engineering (8.6650) (10.0460) (4.3184)

Learning by doing × Human capital interaction effects
αhc 0.005743 −0.016614 0.019213
Cumulative volume (1.2385) (−2.3083) (3.0847)
βhc −0.002727 0.002704 0.000465
Cumulative engineering (−4.8009) (0.6661) (0.4282)
chc 0.43729 −0.40364 −0.2936
Constant (4.9022) (−0.7718) (−5.5748)

Control variables
Clean Room Grade −0.000032 −0.000072 −0.000105

(−0.4246) (−0.7718) (−1.2365)
Mask Layers −0.049498 −0.02696 0.02399

(−2.3151) (−1.3192) (2.3471)
Equipment Vintage −0.10261 −0.08568 −0.14308

(−2.6238) (−2.2554) (−4.3952)
R2 0.9703 0.9684 0.9695
LR-test statistic 44.5780 2.8944 25.7854
ρ 0.6102 0.6341 0.5434

Number of observations = 702
Number of process technologies = 49
Values in parentheses are asymptotic t-statistics

volume and cumulative engineering are approxi-
mately equal implying that, at the sample mean,
one full-time equivalent engineer per month is
worth about 1000 wafers as a source of learning.

Results for the (static) control variables are
mixed. Of the estimates of the three control vari-
ables, clean room grade (maximum number of
particles), number of mask layers, and equipment
vintage, only equipment vintage has a significant
relationship with defects. Our results suggest that
newer equipment provides superior process control
and does significantly reduce defects. Contrary to
expectations, clean room grade (maximum num-
ber of particles in the fab) does not have a sig-
nificant relationship with defects, and in fact the
sign is typically in the ‘wrong’ direction. How-
ever, our interviews suggest that this result should
not be construed to suggest that cleanliness in the
manufacturing environment is unimportant or dele-
terious. The great expense that firms incur to con-
struct and maintain particle-free factories testifies
to the importance of clean rooms. The sign and

insignificance of this coefficient are more likely
due to the coarseness of the cleanliness measure
that indicates the maximum number of particles
in the environment rather than the actual number
of particles. Many firms have installed technolo-
gies that reduce the actual number of particles
below the level reported in the clean room grade.
We also found that the number of mask layers
(process steps) does not reduce the likelihood of
defects. Like clean room grade, the estimated coef-
ficient is insignificant. The number of mask layers
is an attempt to partially control for the inher-
ent complexity and difficulty of the manufacturing
process as it will contribute to defects. Unfortu-
nately, our measure of this variable seems to be
co-linear with the capability of the manufactur-
ing site. Specifically, more difficult processes are
done only in more technically advanced fabs such
that, on average, they achieve higher yields. Our
variable to control for the technical environment,
the equipment vintage, has the expected sign and
is only sometimes significant. These unexpected
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Table 4. Impact of human resource deployment and inimitability on learning performance

Coefficient Deployment Inimitability

Team
involvement

SPC
troubleshooting

Experience
required

Turnover

Basic learning effects
γ 6.3281 9.3453 13.372 9.9084
h1(·) constant (1.8868) (0.3913) (4.5077) (4.4468)
α 0.005272 0.002269 0.001226 0.005769
Cumulative volume (1.6617) (0.6879) (0.5911) (2.080)
β 0.007349 0.007017 0.003396 0.005306
Cumulative engineering (9.3990) (1.7008) (5.7137) (11.0020)

Learning by doing × Human capital interaction effects
αhc −0.002393 0.006541 0.001767 0.000132
Cumulative volume (−1.3682) (0.6272) (0.5764) (0.0437)
βhc −0.002669 −0.002677 0.002701 −0.002796
Cumulative engineering (−4.7936) (−0.9919) (2.5740) (−10.3550)
chc 0.19483 0.47402 −0.3886 −1.0766
Constant (1.7489) (1.7794) (−5.3850) (−6.0381)

Control variables
Clean room grade −0.000088 −0.000099 −0.000023 0.000073

(−0.8096) (−0.1514) (−0.5146) (5.9162)
Mask layers −0.024478 −0.05353 (0.01366) 0.009866

(−1.4550) (−0.5941) (1.1314) (1.1181)
Equipment vintage −0.07007 −0.10412 −0.14966 −0.11007

(−1.8450) (−0.3988) (−4.4273) (−4.3180)
R2 0.9695 0.9705 0.9720 0.9691
LR-test statistic 26.8448 48.1036 82.0694 25.0628
ρ 0.6005 0.6178 0.4829 0.5752

Number of observations = 702
Number of process technologies = 49
Values in parentheses are asymptotic t-statistics

results are likely the product of measuring opposite
effects of the same force.

Table 2 also reports the results of regressions
focusing on the impact of the human resource
selection variables on the initial level and rate of
improvement in defects. In the second column, the
regression regarding technical education provides
only limited support for Hypothesis 1a. The sign
and value of the ‘constant’ coefficient chc indicates
the direct effect of technical education require-
ments on the level of defects. In other words, it
shifts the level or intercept of the learning curve
up or down. The estimate indicates that requiring
a technical education significantly reduces defects
(shifts the learning curve down to lower levels of
defects). However, requiring a technical education
does not significantly influence the effectiveness of
cumulative volume or cumulative engineering in
moving along the learning curve to lower levels of
defects. The increase in R2 from adding the edu-
cation variable coefficients to the basic model is

quite small. Therefore, a likelihood ratio test was
employed to verify additional explanatory power
gained from adding education to the model. The
likelihood ratio test statistic of 3.7 is well below
the critical value (5.25) for a χ2 one-tailed test
with three degrees of freedom at 90 percent sig-
nificance. Thus, while the direct learning effect is
significant, adding education to the model does not
significantly increase its explanatory power.

Results from the regression including the effect
of human capital screening tests are consistent with
Hypothesis 1b. The estimated ‘constant’ coefficient
shows that defect density is significantly improved
with increased screening in the hiring process. The
regression also indicates that, while there is no sig-
nificant impact on cumulative volume, screening
significantly reduces the marginal productivity of
engineering to reduce defects. This result confirms
that effective screening places these firms on a dif-
ferent learning curve than their rivals. Firms that
use screening tests in the hiring process are able
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to more effectively identify employees with the
ability to learn, adapt to the new environment,
and, depending on the quality of the screening
test, identify candidates with skills that are con-
ducive with those needed in the fab. The positive
effect of screening tests moves firms so quickly
down the learning curve that only the more difficult
yield problems remain, rendering the engineering
problem-solving activities relatively unproductive.
The likelihood ratio test statistic is well above the
critical value at the 99 percent confidence level
(11.34), indicating that screening adds significant
explanatory power to the model.

Estimates of the effect of human capital devel-
oped through investments in development and
training are reported in Table 3. These results indi-
cate that fabs with the greatest emphasis on statis-
tical process control (SPC) training for equipment
operators enjoy significantly fewer defects. SPC
training seems to enable operators to solve rela-
tively simple problems on their own, which signifi-
cantly reduces defects. In turn, this reduces the pro-
ductivity of engineers as they are left with the more
difficult yield problems. Equipment-specific train-
ing by equipment vendors results in an insignif-
icant increase in defects. Its impact on engineer-
ing productivity is also insignificant, while it has
a significantly negative impact on the productiv-
ity of cumulative volume in reducing defects. The
likelihood ratio test shows that SPC training adds
significant value to the basic model while vendor
training does not. The difference in effectiveness
of SPC training compared to equipment training
seems to suggest that training that strengthens
problem-solving skills is most valuable.

Conceptually, training operators to work on
multiple machines is effectively purchasing an
option against being left without qualified opera-
tors. Empirically, we find that increasing the num-
ber of machines on which operators are qualified
to work significantly increases defects. However,
cumulative volume is made significantly more pro-
ductive as operators are qualified to work on an
increasing number of machines. The likelihood
ratio test shows a significant difference between
the restricted (basic) model and the multiple-
machine qualification model. The significant nega-
tive impact of operators being qualified on multiple
machines indicates that depth of human capital
skills is more valuable than breadth of human
capital skills in influencing learning performance.
Having broad skills seems to sacrifice the depth

of knowledge needed to improve learning perfor-
mance.

Table 4 reports the estimates of the impact of
human capital deployment on the level and rate
of learning by doing performance. These regres-
sions lend strong support to Hypothesis 3. As seen
in the first column, the level of defect density
is significantly reduced with increasing involve-
ment of operators in problem-solving teams. The
impact of team participation on the rate of learn-
ing from cumulative volume is not significant but
the significant, negative coefficient on the inter-
action between cumulative engineering and team
involvement indicates once again that the initial
level of defects is reduced to such a degree by
operators doing some of the work of engineers
that there are diminishing marginal returns from
engineering analysis. The impact of the amount
of time that operators spend ‘troubleshooting’ out-
of-control events is reported in the second col-
umn. Troubleshooting is the direct deployment of
human capital development through SPC train-
ing. As with problem-solving team involvement,
the direct effect of troubleshooting is a significant
reduction in defects. Surprisingly, troubleshooting
does not significantly affect the rate of learning
through cumulative volume or cumulative engi-
neering. The likelihood ratio test indicates signifi-
cant explanatory power in both models.

Table 4 also reports results for the regressions
that test the inimitability of human capital. Hypoth-
esis 4 is strongly supported in these regressions.
For example, the initial level of defects actu-
ally increases when fabs hire more employees
with prior semiconductor experience. Increasing
prior experience represents increasing human cap-
ital specificity in another firm and the negative
impact on learning supports Hypothesis 4a that
asserts that human capital is not easily transfer-
able to a rival’s manufacturing environment. These
results corroborate the comments of one manager,
who stated that he would rather not hire experi-
enced operators because it took too long to help
them overcome the habits they had learned at other
firms. A fab cannot imitate the value of a rival’s
human capital simply by hiring away some of the
rival’s human resources, at least not without repli-
cating the rival’s manufacturing environment.

Finally, the regressions of turnover on defect
density (column 4) provides even stronger evi-
dence of the importance of firm-specific human
capital on learning. This regression shows that
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defects increase significantly as the turnover rate
increases. This validates the assertion that turnover
represents knowledge leaving the firm. When expe-
rienced employees are replaced by new employ-
ees with less firm-specific human capital, the firm
must work hard to develop and deploy them to
the same effect within the firm’s environment. As
a result, the new employees require extra train-
ing and are more prone to making mistakes. A
steady flow of new operators making the same old
mistakes implies that permanent solutions are not
being implemented and that learning by doing is
slowed as learning resources are diverted to train-
ing.16 Moreover, less knowledge is available to
employ in problem-solving activities. In this sit-
uation, human capital becomes a source of yield
losses rather than part of the solution. The regres-
sion also shows that high turnover makes engineers
significantly less productive in reducing defect
density. Through our interviews we learned that
this is because with high turnover engineers must
spend more of their time training new operators
and continually solving the same repeated mistakes
rather than implementing permanent solutions to
yield problems. Thus, higher turnover both shifts
the learning curve up and makes it flatter. This
result reveals that, at least for some time, the value
of experienced human resources can not be imi-
tated and the dynamic adjustment costs of training
and deploying new human resources can lead to
persistent differences in performance. This result
also indicates that in the semiconductor industry,
increased equipment automation and engineering
analysis can not fully substitute for the value of
firm-specific human capital.

Our results strongly suggest that human capital
holds great potential as a resource that can confer
and sustain competitive advantage. While human
resources are mobile, their firm-specific knowledge
comprised of both codified and tacit knowledge
acquired in a specific environment are often not
fully mobile. The degree of firm specificity of
human capital determines the degree to which it
is protected from imitation through the socially
complex environments where it is gained and used
and through the time compression diseconomies

16 Argote, Beckman, and Epple (1990) found no significant
evidence of turnover reducing learning rates. Their result is a
puzzle because turnover should affect the stock and flows of
knowledge as seen in the simulations of Carley (1992). The
regression estimates reported here provide empirical verification
of the disruptive effect of turnover on learning.

that prevent rapid imitation. Thus, in this light,
firm-specific human capital may earn rents in the
form of superior performance in learning by doing.
Differences in specialized human capital place
firms on different learning curves that provide cost
advantages for the superior firms. The findings of
this study suggest that inimitable human capital
allows some firms to remain on lower-cost learning
curves even when they do not lead the industry in
market share/volume.

Effective deployment of human capital inte-
grates the entire manufacturing staff into one large
problem-solving organization. In some fabs, equip-
ment operators are expected only to push buttons
and load wafers into machines. In other fabs, oper-
ators are given responsibility for equipment main-
tenance, repair, process control, and basic yield
improvement. These fabs invest in the ‘learning
by doing’ skills of their operators by training
them in math, literacy, statistical process con-
trol, and detailed knowledge about their equipment
and manufacturing processes. Over time, operators
develop a stock of tacit knowledge related to the
intricacies of their process steps and the idiosyn-
crasies of their machines. When fabs effectively
include operators in yield improvement efforts,
operators bring their specific tacit knowledge to
bear on yield problems. These high-performance
fabs expect their operators to solve some of the
yield problems that would be left to engineers
in other fabs. The benefit is that not only are
these operators more efficient and less prone to
making mistakes, but they also bring their tacit
knowledge to learning (yield improvement) efforts.
Consequently, the fabs are able to reduce defects,
improve yields and lower costs at faster rates than
rival fabs.

Our results also indicate that the cost advantages
that can be attributed to human capital are sustain-
able because human capital is difficult (costly) to
imitate. If human capital were perfectly mobile,
imitation would require nothing more than hir-
ing away experienced human resources. In that
case, wages would adjust to match the produc-
tive value of the human resource and firms would
earn no rents. In the semiconductor industry, firm-
specific human capital is not mobile and does
not deliver the same value in another firm that it
did in the firm where it was developed. If new
firm-specific human capital could be developed
quickly, turnover would present no impediment to
matching a rival’s costs through learning because
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new human resources could be screened, trained,
and deployed immediately. In fact, turnover is a
double-edged impediment to imitating the value
of a rival’s human capital. First, knowledge leaves
the firm with human resource turnover and then the
rate of learning is slowed by the steady flow of new
human resources. The inimitability tests reveal that
human capital is also non-substitutable. Most fabs
with high turnover rates (50% or more) find that
they cannot utilize operators in their yield improve-
ment efforts because they are not qualified. Instead,
they must substitute some combination of engi-
neers and automation to bypass the role of human
capital. The results clearly show that while these
substitute measures may help, these firms suffer
inferior performance.

CONCLUSION

Despite the popularity of the resource-based view
for explaining persistent heterogeneity in firm per-
formance, empirical verification of the theory has
lagged because many of the resources that gener-
ate sustainable advantages are either unobservable
or extremely difficult to measure (Godfrey and
Hill, 1995; Rouse and Daellenbach, 1999). This
study seeks to overcome that limitation by utilizing
proprietary, technology-specific data at the factory
level in the semiconductor industry to study the
impact of human resources on learning by doing
performance.17 We find that managing the selec-
tion, development, and deployment of human capi-
tal can significantly improve learning by doing and
firm performance. Firms that use screening tests in
the hiring process enjoy higher performance, pre-
sumably because they are able to identify employ-
ees with the aptitudes, attitudes, and skills that con-
tribute to the stock of firm-specific human capital
that serves the specialized needs of the company.
Firms that emphasize human capital development
through training in statistical process control find
that their employees are more productive and can
meaningfully participate in the learning activities
of the firm.18 We also find that the deployment of

17 This effort to engage in ‘inquiry from the inside’ complements
research conducted through ‘inquiry from the outside.’ Adapting
the traditional theories of economics to address the questions
discussed by managers follows in the tradition of Penrose (1959)
in the resource-based view of the firm (Kor and Mahoney, 2000).
18 Not all investments in training pay equal dividends. Equip-
ment-specific (but not firm-specific) training provided by equip-
ment vendors does not contribute to superior performance, while

human capital to learning activities creates signif-
icant cost advantages. As equipment operators are
integrated into the firm’s problem-solving activi-
ties, their tacit knowledge is added to the effort
and moves the technology to a significantly lower
learning curve relative to firms that do not deploy
operator knowledge in problem-solving. This use
of operators as problem-solvers elevates their sta-
tus from pushing buttons to generating new knowl-
edge about the process technology and reducing
costs. Transforming operators into quasi-engineers
requires investments in human capital but pays big
dividends in learning performance. In short, supe-
rior learning performance comes (at least in part)
from better human resources and from better prac-
tices to develop firm-specific human capital and
deploy it to learning activities.

Intel’s knowledge management processes pro-
vide an excellent illustration of our findings. Most
semiconductor industry analysts believe that ‘Intel
has the best chip yield in the industry’ (Pfeif-
fer, 2003: 55). They attribute Intel’s success to
its ‘copy exactly’ manufacturing process which
involves: (a) creating a prototype manufacturing
process at Intel’s R&D fab in Oregon and meticu-
lously documenting each step, (b) transferring the
process to a new plant with workers that have
spent a year at the Oregon fab ‘working side-by-
side with R&D engineers learning everything they
need to know,’ and (c) allowing production engi-
neers to improve the process, after extensive peer
review, once chips are in production. For example,
before Intel recently opened a new fab in New
Mexico, it shipped 300 workers to Oregon for a
year where it attempted to transfer ‘tribal knowl-
edge’ to the workers. New Mexico plant manager
Bruce Sohn says that tribal knowledge is informa-
tion that Intel’s most experienced employees know
but may not have written down. He states, ‘We
want to copy everything—even the subtle things
we may not even acknowledge that we do’ (Pfeif-
fer, 2003: 55). When one worker was found to
be polishing the inside of an etching machine by
wiping across the grain, he was asked to do it
in the approved circular pattern instead (It is less
likely to drop specks of debris into the grooves.)
Intel’s attention to developing specialized human
resources with tacit knowledge that aids ‘learning

training operators to work with multiple types of equipment
results in significant performance losses.
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by doing’ is critical to their cost advantage in semi-
conductors.

The competitive advantage of Intel and other
high-performing fabs gained through the role of
human capital in learning is protected by the inim-
itability of human capital. We find that firms that
attempt to obtain human capital by hiring opera-
tors with experience in rival firms suffer significant
performance losses. To the degree that experi-
ence builds firm-specific human capital, it is less
productive in another firm and requires dynamic
adjustment costs to evaluate, retrain, and deploy
the human capital to productive tasks in the new
environment. Similarly, the impact of turnover on
learning performance reveals the challenges of imi-
tating the value of human capital without taking
time to develop it. Turnover results in a loss of
knowledge and training that leads to significant
increases in defects. On top of that, the rate of
learning is slowed as turnover disrupts the basic
learning process and human resources are focused
on training (relearning) rather than new learning.
This result is consistent with Penrose’s (1959)
observation that the time and attention required for
existing personnel to train new personnel leads to
dynamic adjustment costs.

There are several questions that remain for
future research on the role of human capital in
generating and sustaining competitive advantage.
For example, what is the nature (what are the
specific attributes) of firm-specific knowledge?
Future research might more explicitly explore the
attributes of knowledge that are truly firm-specific
vs. those that are redeployable to other firm set-
tings. Moreover, are there optimal ways to target
and develop firm-specific human capital? Along
a similar vein, future research could explore in
greater detail the conditions under which prior
industry experience helps, or hurts, an employee’s
performance. While our research suggests that
prior industry experience hurts performance, there
are likely to be industry contexts within which
prior experience improves performance. In addi-
tion, future research might address some important
questions with regard to human resource train-
ing, such as: Which training methods and top-
ics are most important for learning by doing?
How is the product of training transformed into
tacit knowledge and how is it integrated into the
broader problem-solving activities in the firm?
Finally, future research might seek to develop

deeper insights into the workings of social com-
plexity and time compression diseconomies and
the role they play in protecting human capital
from imitation.

In summary, our research clearly shows that
human resources are strategically important in
semiconductor manufacturing because they em-
body firm-specific tacit knowledge. This knowl-
edge is difficult for competitors to imitate even
when employees are hired away because the knowl-
edge is specific to the original work environment
and therefore cannot add similar value in a dif-
ferent work environment. Thus, firms that employ
effective human resource selection, training, and
deployment processes that facilitate learning by
doing may enjoy the only truly sustainable advan-
tage—the ability to learn (and improve) faster than
competitors.

ACKNOWLEDGEMENTS

This research was conducted in connection with
the Competitive Semiconductor Manufacturing
project at U.C. Berkeley. We gratefully acknowl-
edge funding from the Alfred P. Sloan Foundation.
We are indebted to Tony Alvarez, Clair Brown,
Sean Cunningham, David Hodges, Rob Leachman,
Jeff Macher, Joe Mahoney, Steve Michael, David
Mowery, Stefan Reichelstein, and Katalin Voros
for their insights into the modeling, data collec-
tion, and analysis of the role of human capital
in semiconductor manufacturing and strategy. We
also thank seminar participants at the University of
Illinois, Texas A&M, Ohio State, Purdue, Brigham
Young University, and the annual meetings of the
Academy of Management. This research would not
have been possible without the generous coopera-
tion of the participating semiconductor firms.

REFERENCES

Abernathy WJ, Wayne K. 1974. Limits of the learning
curve. Harvard Business Review 52(5): 109–118.

Adler PS, Clark KB. 1991. Behind the learning curve: a
sketch of the learning process. Management Science
37(3): 267–281.

Aharoni Y. 1993. In search for the unique: can
firm-specific advantages be evaluated? Journal of
Management Studies 30(1): 31–49.

Alberts WW. 1989. The experience curve doctrine
reconsidered. Journal of Marketing 53(3): 36–49.

Copyright  2004 John Wiley & Sons, Ltd. Strat. Mgmt. J., 25: 1155–1178 (2004)



www.manaraa.com

Human Capital as Competitive Advantage 1175

Alchian A. 1963. Reliability of progress curves in
airframe production. Econometrica 31: 679–693.

Amit R. 1986. Cost leadership strategy and experience
curves. Strategic Management Journal 7(3): 281–292.

Amit R, Schoemaker P. 1993. Strategic assets and
organizational rent. Strategic Management Journal
14(1): 33–46.

Argote L, Beckman SL, Epple D. 1990. The persistence
and transfer of learning in industrial settings.
Management Science 36: 140–154.

Argote L, Epple D. 1990. Learning curves in manufac-
turing. Science 247(4945): 920–924.

Arthur JB. 1994. Effects of human resource systems on
manufacturing performance and turnover. Academy of
Management Journal 37(3): 670–687.

Asher H. 1956. Cost–quantity relationships in the
airframe industry. Technical Report R-291. Rand
Corporation: Santa Monica, CA.

Bahk BH, Gort M. 1993. Decomposing learning by doing
in new plants. Journal of Political Economy 101(4):
561–583.

Bailey CD. 1989. Forgetting and the learning curve:
a laboratory study. Management Science 35(3):
340–352.

Baloff N. 1966. Startups in machine-intensive production
systems. Journal of Industrial Engineering 17: 25–32.

Baloff N. 1971. Extension of the learning curve: some
empirical results. Operational Research Quarterly
22(4): 329–340.

Barney JB. 1986. Strategic factor markets, expectations,
luck, and business strategy. Management Science 32:
1231–1241.

Barney JB. 1991. Firm resources and sustained com-
petitive advantage. Journal of Management 17(1):
99–120.

Becker B, Gerhart B. 1996. The impact of human
resource management on organizational performance:
progress and prospects. Academy of Management
Journal 39(4): 779–801.

Becker G. 1975. Human Capital . National Bureau of
Research: New York.

Bohn RE. 1995. Noise and learning in semiconductor
manufacturing. Management Science 41(1): 31–42.

Boston Consulting Group. 1972. Perspectives on
Experience. Boston Consulting Group: Boston, MA.

Cappelli P, Singh H. 1992. Integrating strategic human
resources and strategic management. In Research
Frontiers in Industrial Relations and Human Re-
sources , Lewin D, Olivia S (eds). Industrial Relations
Research Association: Madison, WI; 165–192.

Carley K. 1992. Organizational learning and personnel
turnover. Organization Science 3(1): 20–46.

Carlson JG. 1961. How management can use the
improvement phenomenon. California Management
Review 3(2): 83–94.

Carlson JG. 1973. Cubic learning curves: precision tool
for labor estimation. Manufacturing Engineering and
Management 71(5): 22–25.

Carr G. 1946. Peacetime cost estimating new learning
curves. Aviation 44(4): 76–77.

Conner K. 1991. A historical comparison of resource-
based theory and five schools of thought within

industrial organization economics: do we have a new
theory of the firm? Journal of Management 17(1):
121–154.

Conway R, Schultz A. 1959. The manufacturing progress
function. Journal of Industrial Engineering 10(1):
39–53.

DeJong J. 1957. The effects of increasing skill on cycle
time and its consequences for time standards. Ergono-
mics 1(1): 51–60.

Dierickx I, Cool K. 1989. Asset stock accumulation and
sustainability of competitive advantage. Management
Science 35(12): 207–223.

Dudley L. 1972. Learning and productivity changes
in metal products. American Economic Review 62:
662–669.

Dutton J, Thomas A. 1984. Treating progress functions
as managerial technology. Academy of Management
Review 9: 235–247.

Dyer JH. 2000. Collaborative Advantage. Oxford Univer-
sity Press: New York.

Dyer JH, Hatch NW. 2003. Relation-specific capabili-
tites, network barriers to knowledge transfers, and
competitive advantage. Working paper, Brigham
Young University.

Dyer JH, Hatch NW. 2004. Using supplier networks to
learn faster. Sloan Management Review 45(3): 57–63.

Garg A, Milliman P. 1961. The aircraft progress curve
modified for design changes. Journal of Industrial
Engineering 12(1): 23–27.

Ghemawat P, Spence AM. 1985. Learning curve spill-
overs and market performance. Quarterly Journal of
Economics 100: 839–852.

Godfrey PC, Hill CWL. 1995. The problem of unob-
servables in strategic management research. Strategic
Management Journal 16(7): 519–533.

Grant RM. 1996. Toward a knowledge-based theory
of the firm. Strategic Management Journal , Winter
Special Issue 17: 109–122.

Gruber H. 1992. The learning curve in the production of
semiconductor memory chips. Applied Economics 24:
885–894.

Hall G, Howell S. 1985. The experience curve from
the economist’s perspective. Strategic Management
Journal 6(3): 197–212.

Hatch NW, Mowery DC. 1998. Process innovation and
learning by doing in semiconductor manufacturing.
Management Science 44(11): 1461–1477.

Hatch NW, Reichelstein S. 2003. Knowledge and prior
learning in the learning curve: learning effects in
semiconductor fabrication. Working paper, Brigham
Young University.

Hirsch WZ. 1952. Progress functions of machine tool
manufacturing. Econometrica 20(1): 81–82.

Hirschmann WB. 1964. Profit from the learning curve.
Harvard Business Review 42(1): 125–139.

Hitt MA, Bierman L, Shimizu K, Kochhar R. 2001.
Direct and moderating effects of human capital on
strategy and performance in professional firms: a
resource-based perspective. Academy of Management
Journal 44(1): 13–28.

Copyright  2004 John Wiley & Sons, Ltd. Strat. Mgmt. J., 25: 1155–1178 (2004)



www.manaraa.com

1176 N. W. Hatch and J. H. Dyer

Hunter JE, Schmidt FL. 1982. Ability tests: economic
benefits versus the issue of fairness. Industrial
Relations 21: 293–308.

Huselid MA. 1995. The impact of human resource
management practices on turnover, productivity,
and corporate financial performance. Academy of
Management Journal 38(3): 635–672.

Ichniowski C, Shaw K. 1999. The effects of human
resource management systems on economic perfor-
mance: an international comparison of U.S. and
Japanese firms. Management Science 45(5): 704–721.

Ingham H. 1992. Organizational structure and firm
performance: an intertemporal perspective. Journal of
Economic Studies 19(5): 19–35.

Irwin DA, Klenow PJ. 1994. Learning-by-doing spill-
overs in the semiconductor industry. Journal of
Political Economy 102(6): 1200–1227.

Ittner CD, Nagar V, Rajan MV. 2001. An empirical
examination of dynamic quality-based learning
models. Management Science 47(4): 563–578.

Jarmin RS. 1994. Learning by doing and competition in
the early rayon industry. RAND Journal of Economics
25(3): 441–454.

Kilbridge M. 1962. A model for industrial learning.
Management Science 8(4): 516–527.

Klein B, Crawford RG, Alchian AA. 1978. Vertical
integration, appropriable rents, and the competitive
contracting process. Journal of Law and Economics
21: 297–326.

Knott AM. 2003. The organizational routines factor
market paradox. Strategic Management Journal ,
Special Issue 24(10): 929–943.

Koch MJ, McGrath RG. 1996. Improving labor produc-
tivity: human resource management policies do matter.
Strategic Management Journal 17(5): 335–354.

Kor YY, Mahoney JT. 2000. Penrose’s resource-based
approach: the process and product of research
creativity. Journal of Management Studies 37(1):
109–139.

Lado AA, Boyd NG, Wright P. 1992. A competency-
based model of sustainable competitive advantage:
toward a conceptual integration. Journal of Manage-
ment 18(1): 77–91.

Lado AA, Wilson MC. 1994. Human resource systems
and sustained competitive advantage: a competency-
based perspective. Academy of Management Review
19(4): 699–727.
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